pseudo-almost valuation rings
نویسندگان
چکیده
the aim of this paper is to generalize thenotion of pseudo-almost valuation domains to arbitrary commutative rings. it is shown that the classes of chained rings and pseudo-valuation rings are properly contained in the class of pseudo-almost valuation rings; also the class of pseudo-almost valuation rings is properly contained in the class of quasi-local rings with linearly ordered prime ideals.
منابع مشابه
Pseudo-almost valuation rings
The aim of this paper is to generalize thenotion of pseudo-almost valuation domains to arbitrary commutative rings. It is shown that the classes of chained rings and pseudo-valuation rings are properly contained in the class of pseudo-almost valuation rings; also the class of pseudo-almost valuation rings is properly contained in the class of quasi-local rings with linearly ordere...
متن کاملAlmost valuation rings
The aim of this paper is to generalize the notion of almost valuation domains to arbitrary commutative rings. Also, we consider relations between almost valuation rings and pseudo-almost valuation rings. We prove that the class of almost valuation rings is properly contained in the class of pseudo-almost valuation rings. Among the properties of almost valuation rings, we sh...
متن کاملPseudo-Valuation Near ring and Pseudo-Valuation N-group in Near Rings
In this paper, persents the definitions of strongly prime ideal, strongly prime N-subgroup, Pseudo-valuation near ring and Pseudo-valuation N-group. Some of their properties have also been proven by theorems. Then it is shown that, if N be near ring with quotient near-field K and P be a strongly prime ideal of near ring N, then is a strongly prime ideal of , for any multiplication subset S of...
متن کاملOre Extensions over Pseudo-valuation Rings
Let R be a commutative Noetherian Q-algebra (Q is the field of rational numbers). Let δ be a derivation of R and σ be an automorphism of R. Then we prove the following: 1. If R is a Pseudo-valuation ring, then R[x, δ] is also a Pseudo-valuation ring. 2. If R is a divided ring, then R[x, δ] is also a divided ring. 3. If R is a Pseudo-valuation ring, thenR[x, x−1, σ] is also a Pseudo-valuation ri...
متن کاملOre Extensions over near Pseudo-valuation Rings
We recall that a ring R is called near pseudo-valuation ring if every minimal prime ideal is a strongly prime ideal. Let R be a commutative ring, σ an automorphism of R. Recall that a prime ideal P of R is σ-divided if it is comparable (under inclusion) to every σ-stable ideal I of R. A ring R is called a σ-divided ring if every prime ideal of R is σ-divided. Also a ring R is almost σ-divided r...
متن کاملCompletely Pseudo-valuation Rings and Their Extensions
Recall that a commutative ring R is said to be a pseudo-valuation ring if every prime ideal of R is strongly prime. We define a completely pseudovaluation ring. Let R be a ring (not necessarily commutative). We say that R is a completely pseudo-valuation ring if every prime ideal of R is completely prime. With this we prove that if R is a commutative Noetherian ring, which is also an algebra ov...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
bulletin of the iranian mathematical societyناشر: iranian mathematical society (ims)
ISSN 1017-060X
دوره 41
شماره 4 2015
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023